Estimation of Transmission Coefficient of Water Waves striking with Verticle Barrier

Naveen Kumar
nvnbharti237@gmail.com

Abstract

Analytical expressions for the diffracted potentials are obtained by use of the method of seperation of variables.The complex transmission coefficents are determined using eigenfunction method. The methods of analytical algebraic least-square approximation are employed to solve the corresponding over-determined system of linear algebraic equations and thereby evaluate the reflection coefficients. Results obtained using boundary element method are used to comapre absolute values of the transmission coefficients.

Keywords: Boundary value problem; least-square approximation;algebraic least-square method; transmission coefficient.

1 Introduction

The interaction of surface waves with a fixed or moving obstaclue has long standing interest in may engineering applications. Ursell[1] and others studies transmission of water waves in two dimension analytically. Among theoretical studies, Miles[3] used a scattering matrix method to calculate the reflection and transmission coefficients for the case of a step discontinuity between two finite depths. A scattering matrix obtained from the variation formulation was defined by relating the coefficients of the two propagating modes on each side of the step. Over a smoothly varying bottom topography O,Hare and Davies [5] studied propagation of waves. A similar technique was also used by Rey et al. [6]. The interaction of laminar wakes with freesurface waves generated by a moving body beneath the surface of an incompressible fluid was solved by $\mathrm{Lu}[7]$ using the method of integral transforms. Feng and $\mathrm{Lu}[8]$ analysed the problem of interaction of surface water waves with floating structures of arbitrary shapes and its solution was obtained with the aid of an eigenfunction expansion method.

Algebraic over-determined systems of equations are obtained using eigen function method and then further solve by using least- square approach.

2 Mathematical formulation

Assume that after travelling infinite distance, water waves strike with a verticle barrier over the flat bottom in the finite depth. Consider the x-axis over the free surface and z-axis vertically downward. Let a thin vertical barrier is placed at the origin in the positive z direction. As

Figure 1: Sketch of scattering of surface waves by vertical barrier
the train of water waves incident upon the barrrier then some of the incident water waves are transmitted through the gap in the positive x direction (see fig. 1).

Suppose the fluid motion is irrotational and simple harmonic and the fluid is incompressible and inviscid.Here, the velocity potential $\Phi(x, z, t)$ taken as $\Phi(x, z, t)=\operatorname{Re}\left\{\phi(x, z) e^{-i \sigma t}\right\}$. The complex velocity potential $\phi(x, z)$ satisfies the Laplace's equation:

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0, \text { in the fluid region } \tag{1}
\end{equation*}
$$

along with the boundary conditions described as follows:

$$
\begin{align*}
& \frac{\partial \phi}{\partial z}+K \phi=0 \quad \mathrm{z}=0, \tag{2}\\
& \frac{\partial \phi}{\partial z}=0 \text { on } z=h \tag{3}\\
& \left.\frac{\partial \phi}{\partial x}\right|_{x=0^{-}}=\left.\frac{\partial \phi}{\partial x}\right|_{x=0^{+}}=0 \quad \text { on } x=0, z \in L \tag{4}\\
& \left.\frac{\partial \phi}{\partial x}\right|_{x=0^{-}}=\left.\frac{\partial \phi}{\partial x}\right|_{x=0^{+}} \text {on } x=0, z \in \bar{L}, \tag{5}\\
& \left.\phi\right|_{x=0^{-}}=\left.\phi\right|_{x=0^{+}} \text {on } x=0, z \in \bar{L}, \tag{6}\\
& \lim _{k x \rightarrow \infty}\left(\frac{\partial}{\partial x} \mp i k\right)\binom{\phi}{\phi-\phi^{i n c}}=0 ., \tag{7}
\end{align*}
$$

where $\phi^{i n c}(x, z)$ is the incident wave and \bar{L} represents gap.
with k is the positive real root of transcendental equation $K-k \tanh k h=0$ and $K=\frac{\omega^{2}}{g}$, ω is angular frequency of incident wave and g is gravitational acceleration. The relation (4) represents normal velocity component, i.e., the normal velocity in the x direction along the barrier being zero. The relations (5) and (6) represent continuity of velocity and pressure respectively.

3 Method of solution

From the governing equation and boundary conditions, the velocity potentials of waves propagating in the given domain is given by

$$
\begin{align*}
& \phi(x, z)=A_{0} e^{i k x} \frac{\cosh k(h-z)}{\cosh k h}+\sum_{n=1}^{\infty} A_{n} \cos _{n}(h-z) e^{-k_{n} x}, \quad x>0 \tag{8}\\
& \phi(x, z)=e^{i k x} \frac{\cosh k(h-z)}{\cosh k h}+B_{0} e^{-i k x} \frac{\cosh k(h-z)}{\cosh k h}+\sum_{n=1}^{\infty} B_{n} \cos k_{n}(h-z) e^{k_{n} x}, \quad x<0(9)
\end{align*}
$$

where k_{n} are the roots of the equation $K+k \tan k h=0$.

Using conditions (4) and (5), we obtain

$$
\begin{align*}
i k \frac{\cosh k(h-z)}{\cosh k h} & -i B_{0} k \frac{\cosh k(h-z)}{\cosh k h}+\sum_{n=1}^{\infty} B_{n} k_{n} \operatorname{cosk}_{n}(h-z) \tag{10}\\
& =A_{0} i k \frac{\cosh k(h-z)}{\cosh k h}-\sum_{n=1}^{\infty} A_{n} k_{n} \cos k_{n}(h-z) .
\end{align*}
$$

Matching the coefficients in both side of the equation, we have

$$
\begin{equation*}
1-A_{0}-B_{0}=0 \quad \text { and } \quad A_{n}=-B_{n} \tag{11}
\end{equation*}
$$

Using the condition (4), we have

$$
\begin{align*}
& A_{0} i k \frac{\cosh k(h-z)}{\cosh k h}-\sum_{n=1}^{\infty} A_{n} k_{n} \cos k_{n}(h-z)=0, \quad z \in L \\
& \sum_{n=0}^{\infty} A_{n} k_{n} \cos k_{n}(h-z)=0, \quad z \in L \tag{12}
\end{align*}
$$

From the condition (6) across the gap, we have

$$
\begin{align*}
& \left(1-A_{0}+B_{0}\right) \frac{\cosh k(h-z)}{\cosh k h}+\sum_{n=1}^{\infty}\left(B_{n}-A_{n}\right) k_{n} \cos k_{n}(h-z)=0, \quad z \in \bar{L} \tag{13}\\
& \frac{\cosh k(h-z)}{\cosh k h}+\sum_{n=0}^{\infty}-A_{n} k_{n} \cos k_{n}(h-z)=0, \quad z \in \bar{L} \tag{14}
\end{align*}
$$

On solving the equations (12) and (14) to determine the unknowns $A_{n}(n=0,1, \ldots)$. Assuming $z_{1}, z_{2}, z_{3} \ldots \ldots$ and $\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3} \ldots \ldots$ discrete points respectively on barrier L and gap \bar{L} to get overdetermined system as given by

$$
M x=b
$$

Table 1: $|T|$ for different values of d, N, m_{1} and m_{2}

a	$\left(m_{1}, m_{2}, N\right)$	T	$\|T\|$
0.2	$(50,50,70)$	$0.9997+0.0174 i$	0.9998
	$(100,100,120)$	$0.9997+0.0176 i$	0.9998
0.4	$(50,50,70)$	$0.9946+0.0732 i$	0.9972
	$(100,100,120)$	$0.9947+0.0724 i$	0.9973
0.6	$(50,50,70)$	$0.9683+0.1748 i$	0.9839
	$(100,100,120)$	$0.9687+0.1739 i$	0.9842
0.8	$(50,50,70)$	$.9895-0.1607 i$	1.0025
	$(100,100,120)$	$0.8678+0.3385 i$	0.9315

where

$$
M=\left[\begin{array}{cccc}
k_{0} h \cos k_{0} h\left(1-z_{1} / h\right) & k_{1} h \cos k_{1} h\left(1-z_{1} / h\right) & k_{2} h \cos k_{2} h\left(1-z_{1} / h\right) & \cdots \\
\cos k_{0} h\left(1-\hat{z}_{1} / h\right) & \cos k_{1} h\left(1-\hat{z}_{1} / h\right) & \cos k_{2} h\left(1-\hat{z}_{1} / h\right) & \cdots \\
k_{0} h \cos k_{0} h\left(1-z_{2} / h\right) & k_{1} h \cos k_{1} h\left(1-z_{2} / h\right) & k_{2} h \cos k_{2} h\left(1-z_{2} / h\right) & \cdots \\
\cos k_{0} h\left(1-\hat{z}_{2} / h\right) & \cos k_{1} h\left(1-\hat{z}_{2} / h\right) & \cos k_{2} h\left(1-\hat{z}_{2} / h\right) & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right]
$$

$$
x=\left[\begin{array}{c}
A_{0} \\
A_{1} \\
A_{2} \\
\vdots
\end{array}\right] ; b=\left[\begin{array}{c}
0 \\
\frac{\cos k_{0} h\left(1-\hat{z}_{1} / h\right)}{\cos k_{0} h} \\
0 \\
\frac{\cos k_{0} h\left(1-\hat{z}_{1} / h\right)}{\cos k_{0} h} \\
\vdots
\end{array}\right]
$$

$$
\begin{equation*}
\text { Error, } E=\|M x-b\|_{2} \tag{15}
\end{equation*}
$$

4 Numerical results and discussion

The values of parameters are considered in non-dimensional form using depth of water h as the fixed paramerter, such as $L=\left(0, \frac{d}{h}\right), \bar{L}=\left(\frac{d}{h}, 1\right)$. In $L=\left(0, \frac{d}{h}\right)$, the points $\frac{z_{i}}{h}=\frac{z_{1}}{h}+(i-$ 1) $h_{1},\left(i=1,2,3 \ldots ., m_{1}\right)$ with $\frac{z_{1}}{h}=0, \frac{z_{m_{1}}}{h}=\frac{d}{h}$ and spacing $h_{1}=\frac{d}{h\left(m_{1}-1\right)}$ are chosen. Similarly, in $\bar{L}=\left(\frac{d}{h}, 1\right)$, the points $\frac{\overline{z_{i}}}{h}=\frac{\overline{z_{1}}}{h}+(i-1) h_{2},\left(i=1,2,3 \ldots, m_{2}\right)$, with $\frac{\overline{z_{1}}}{h}=\frac{d}{h}, \frac{\overline{z_{m_{2}}}}{h}=1$, and spacing $h_{2}=\left(1-\frac{d}{h}\right) \frac{1}{m_{2}-1}$ are taken. In the table $1,|T|$ are given for different barrier length and different discrete points. The table clearly shows that the values of T are complex numbers.

Here $N=100$ is fixed throughout the numerical computation.
From the tabular data it is easy to observe that the reflection coefficient is increasing as the
length of the barrier is increasings see table

Table 2: Error for different values for N

N	Error,E
10	0.2442
30	0.0921
50	0.0610
70	0.0472
90	0.0397
100	0.0368

5 Conclusion

The transmission coefficients are obtained using eigen function expansion method followed by algebaric least-square method. The l_{2} norm used to find error in the obtained values and the obtained results are presented in the tabular form.

References

[1] Ursell F 1947 The effect of a fixed barrier on surface waves in deep water. Proc. Camp Philos. Soc.43: 374-382
[2] Miles, J W 1967 Surface wave scattering matrix for a shelf. Journal of Fluid Mechanics. vol.28: 755-767
[3] O'Hare T J and Davies A G 1992 A new model for surface wave propagation over undulating topography. Coastal Engineering, vol.18: 251-266
Rey V Belzons M and Guazzelli E 1992 Propagation of surface gravity waves over a rectangular submerged bar. Journal of Fluid Mechanics, vol.235: 453-479
[4] Lu D Q 2004 Interaction of viscous wakes with a free surface. Appl. Math. Mech. vol.26(6):647-655 [5] Xu F and Lu D Q 2011 Hydroelastic interaction between water waves and a thin elastic plate of arbitrary geometry. Sci. China-Phys. Mech. Astron.54: 59-66

