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Abstract: Analytical expressions for the diffracted potentials are obtained by use of the method

of seperation of variables.The complex transmission coefficents are determined using eigenfunc-

tion method. The methods of analytical algebraic least-square approximation are employed to

solve the corresponding over-determined system of linear algebraic equations and thereby eval-

uate the reflection coefficients. Results obtained using boundary element method are used to

comapre absolute values of the transmission coefficients.
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1 Introduction

The interaction of surface waves with a fixed or moving obstaclue has long standing interest in

may engineering applications. Ursell[1] and others studies transmission of water waves in two

dimension analytically. Among theoretical studies, Miles[3] used a scattering matrix method to

calculate the reflection and transmission coefficients for the case of a step discontinuity between

two finite depths. A scattering matrix obtained from the variation formulation was defined

by relating the coefficients of the two propagating modes on each side of the step. Over a

smoothly varying bottom topography O,Hare and Davies [5] studied propagation of waves. A

similar technique was also used by Rey et al. [6]. The interaction of laminar wakes with free-

surface waves generated by a moving body beneath the surface of an incompressible fluid was

solved by Lu[7]using the method of integral transforms. Feng and Lu[8] analysed the problem of

interaction of surface water waves with floating structures of arbitrary shapes and its solution

was obtained with the aid of an eigenfunction expansion method.

Algebraic over-determined systems of equations are obtained using eigen function method

and then further solve by using least- square approach.

2 Mathematical formulation

Assume that after travelling infinite distance, water waves strike with a verticle barrier over the

flat bottom in the finite depth. Consider the x-axis over the free surface and z-axis vertically

downward. Let a thin vertical barrier is placed at the origin in the positive z direction. As
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Figure 1: Sketch of scattering of surface waves by vertical barrier

the train of water waves incident upon the barrrier then some of the incident water waves are

transmitted through the gap in the positive x direction (see fig. 1).

Suppose the fluid motion is irrotational and simple harmonic and the fluid is incompressible

and inviscid.Here, the velocity potential Φ(x, z, t) taken as Φ(x, z, t) = Re{φ(x, z)e−iσt}. The

complex velocity potential φ(x, z) satisfies the Laplace’s equation:

∂2φ

∂x2
+
∂2φ

∂z2
= 0, in the fluid region (1)

along with the boundary conditions described as follows:

∂φ

∂z
+Kφ = 0 z = 0, (2)

∂φ

∂z
= 0 on z = h (3)

∂φ

∂x
|x=0− =

∂φ

∂x
|x=0+ = 0 on x = 0, z ∈ L (4)

∂φ

∂x
|x=0− =

∂φ

∂x
|x=0+ on x = 0, z ∈ L, (5)

φ|x=0− = φ|x=0+ on x = 0, z ∈ L, (6)

lim
kx→∞

(
∂

∂x
∓ ik

)(
φ

φ− φinc

)
= 0., (7)

where φinc(x, z) is the incident wave and L represents gap.

with k is the positive real root of transcendental equation K−k tanh kh = 0 and K =
ω2

g
, ω is

angular frequency of incident wave and g is gravitational acceleration. The relation (4) represents

normal velocity component, i.e., the normal velocity in the x direction along the barrier being

zero. The relations (5) and (6) represent continuity of velocity and pressure respectively.
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3 Method of solution

From the governing equation and boundary conditions, the velocity potentials of waves propa-

gating in the given domain is given by

φ(x, z) = A0e
ikx cosh k(h− z)

cosh kh
+
∞∑
n=1

Ancoskn(h− z)e−knx, x > 0, (8)

φ(x, z) = eikx
cosh k(h− z)

cosh kh
+B0e

−ikx cosh k(h− z)
cosh kh

+

∞∑
n=1

Bncoskn(h− z)eknx, x < 0.(9)

where kn are the roots of the equation K + k tan kh = 0.

Using conditions (4) and (5), we obtain

ik
cosh k(h− z)

cosh kh
− iB0k

cosh k(h− z)
cosh kh

+
∞∑
n=1

Bnkncoskn(h− z)

= A0ik
cosh k(h− z)
cosh kh

−
∞∑
n=1

Ankncoskn(h− z).
(10)

Matching the coefficients in both side of the equation, we have

1−A0 −B0 = 0 and An = −Bn. (11)

Using the condition (4), we have

A0ik
cosh k(h− z)

cosh kh
−
∞∑
n=1

Ankn cos kn(h− z) = 0, z ∈ L

∞∑
n=0

Ankn cos kn(h− z) = 0, z ∈ L (12)

From the condition (6) across the gap, we have

(1−A0 +B0)
cosh k(h− z)
cosh kh

+

∞∑
n=1

(Bn −An)kncoskn(h− z) = 0, z ∈ L (13)

cosh k(h− z)
cosh kh

+
∞∑
n=0

−Ankncoskn(h− z) = 0, z ∈ L (14)

On solving the equations (12) and (14) to determine the unknowns An(n = 0, 1, . . . ). Assuming

z1, z2, z3....... and z1, z2, z3...... discrete points respectively on barrier L and gap L to get over-

determined system as given by

Mx = b
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Table 1: |T | for different values of d,N,m1 and m2

a (m1,m2, N) T |T |
0.2 (50, 50, 70) 0.9997+0.0174i 0.9998

(100, 100, 120) 0.9997+0.0176i 0.9998

0.4 (50, 50, 70) 0.9946+0.0732i 0.9972
(100, 100, 120) 0.9947+0.0724i 0.9973

0.6 (50, 50, 70) 0.9683+0.1748i 0.9839
(100, 100, 120) 0.9687+0.1739i 0.9842

0.8 (50, 50, 70) .9895-0.1607i 1.0025
(100, 100, 120) 0.8678+0.3385i 0.9315

where

M =



k0h cos k0h(1− z1/h) k1h cos k1h(1− z1/h) k2h cos k2h(1− z1/h) · · ·
cos k0h(1− ẑ1/h) cos k1h(1− ẑ1/h) cos k2h(1− ẑ1/h) · · ·

k0h cos k0h(1− z2/h) k1h cos k1h(1− z2/h) k2h cos k2h(1− z2/h) · · ·
cos k0h(1− ẑ2/h) cos k1h(1− ẑ2/h) cos k2h(1− ẑ2/h) · · ·

...
...

...



x =


A0

A1

A2

...

 ; b =



0
cos k0h(1− ẑ1/h)

cos k0h
0

cos k0h(1− ẑ1/h)

cos k0h
...



Error,E =‖Mx− b ‖2 (15)

4 Numerical results and discussion

The values of parameters are considered in non-dimensional form using depth of water h as the

fixed paramerter, such as L = (0, dh), L = ( dh , 1). In L = (0, dh), the points zi
h = z1

h + (i −
1)h1, (i = 1, 2, 3.....,m1) with z1

h = 0,
zm1
h = d

h and spacing h1 = d
h(m1−1) are chosen. Similarly,

in L = ( dh , 1), the points zi
h = z1

h + (i − 1)h2, (i = 1, 2, 3....,m2), with z1
h = d

h ,
zm2
h = 1, and

spacing h2 = (1− d
h) 1

m2−1 are taken. In the table 1, |T | are given for different barrier length and

different discrete points. The table clearly shows that the values of T are complex numbers.

Here N = 100 is fixed throughout the numerical computation.

From the tabular data it is easy to observe that the reflection coefficient is increasing as the
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length of the barrier is increasings see table

Table 2: Error for different values for N

N Error,E

10 0.2442

30 0.0921

50 0.0610

70 0.0472

90 0.0397

100 0.0368

5 Conclusion

The transmission coefficients are obtained using eigen function expansion method followed by

algebaric least-square method. The l2 norm used to find error in the obtained values and the

obtained results are presented in the tabular form.
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